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Ischemic preconditioning is a technique 
where prior application of repeated short 
cycles of ischemia and reperfusion would 

be able to attenuate the severity of the sub-
sequent ischemic reperfusion injury (IRI). 
Remote ischemic preconditioning (RIPC) de-
scribes the ability of the technique to function 
through distance. For example, the applica-
tion of short, repetitive ischemia-reperfusion 
cycles of the limb would protect distant or-
gans like heart, kidney, brain, and liver during 
subsequent IRI. Both phenomena indicate the 
involvement of local, paracrine, as well as re-
mote circulating mediators [1].

During limb ischemia, the diminished flow 
and shearing stress would be associated with 
cell membrane depolarization and inhibition 
of the inward driving K+ channels. The inhibi-
tion of KATP channels would lead to the acti-
vation of T type Ca2+ channels and increased 
Ca2+ influx into endothelial cells. Increased 
intracellular Ca2+ activates Ca2+-dependent 
endothelial NO synthase (eNOS) [1, 2]. Simul-
taneously, hypoxia and ischemia would result 
in an increased production of reactive oxy-
gen species (ROS). Hypoxia inhibits oxidative 
phosphorylation and results in decreased ATP 
production. That activates xanthine oxidase, 
leading to increased ROS production. The 
inhibition of KATP channels, and the persis-
tence of cell membrane depolarization would 
result in NADPH oxidase (NOX2) activation, 
leading to more increase in ROS production 
[1, 3]. Increased production of both NO and 
ROS would be associated with NO oxidation 
to produce nitrite (NO2

–). 

Several studies documented the important 

role of NO in mediating the protective effect 
of IPC and RIPC. While the locally produced 
NO can exert its action in case of IPC, it can-
not be accused for RIPC protective effect be-
cause of its short blood half-life (≤ 2 ms) [4]. 
However, it was observed that NO inhalation 
in human provides protection against IRIs, 
while being associated with a significant in-
crease in the circulating levels of nitrite. In 
addition, NO2

– showed the ability to protect 
against IRI, to exert cytoprotective effects, 
and to decrease the infarction size similar to 
NO [5-12]. Moreover, it has recently been 
confirmed that the application of brachial ar-
tery RIPC results in the activation of eNOS 
and increased plasma NO2

– levels [13].

In the heart, NO2
– would be reduced to NO 

and N2O3 by myoglobin [14, 15]. NO and S-ni-
trosothiols formed from nitrite would inhibit 
complex I of the respiratory chain during re-
perfusion. This would attenuate the increased 
production of ROS in response to IRI, and 
would indirectly affect the functionality of 
complex II [16, 17]. Being at cross-talking 
with mitochondrial KATP channels, modifi-
cation of the functional activity of complex II 
would influence the activity of mitochondrial 
KATP channels [18], this might contribute 
to an improved activity of these channels in 
response to RIPC, which would inhibit the 
opening of mitochondrial permeability transi-
tion pores and the subsequent release of cyto-
chrome c during reperfusion [17, 19].

An important mechanism in the development 
of the IRI is the increased production of in-
flammatory cytokines, which would be re-
sponsible for the recruitment of inflammatory 
cells and initiation of adverse inflammatory 
reactions [20]. In addition to the significant 
increase in ROS production, IRI activates toll-
like receptors [TLRs]. Both result in priming 
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of the heart inflammasomes [21]. 

During ischemia and hypoxia, as well as cold 
preservation of the heart graft, the associat-
ed inhibition of Na+-K+ ATPase and other K+ 
channels would result in decreased intracellu-
lar K+ levels. Even with the administration of 
high extracellular K+ concentrations (during 
cardioplegia), this would lead to the closure of 
K+ channels [3]. The end-result would be the 
drop in intracellular K+ levels, which activates 
the primed inflammasomes [22]. 

Activated inflammasomes activate caspase-1, 
which activates proIL1β and proIL18, which 
are able to induce IL6. With the important 
role of inflammasomes and TLRs in the es-
tablishment of the inflammatory reactions of 
the IRI, the above-described role of NO and 
NO2

– to attenuate ROS production and to im-

prove the activity of KATP channels would 
interfere with inflammasomes priming and 
activation in response to IRI. Accordingly, 
this would contribute to decreased production 
of inflammatory cytokines, which would ulti-
mately attenuate the immune cell infiltration 
and the adverse immune reactions generated 
in response to the IRI (Fig 1).

This mechanism of action highlights the im-
portance of inactivation of inflammasomes, 
through RIPC, for the attenuation of the haz-
ards of IRI. Although it was reported, to the 
contrary, by some studies that the deletion of 
NLRP3, which is the most studied inflamma-
some component, abates the protective effects 
of IPC due to the inhibition of IL6 production 
and lack of its signaling [23].

It seems that various inflammatory cyto-

Figure 1: Diagrammatic representation of the mechanism, through which NO2
– generated in response to RIPC 

would be involved in the attenuation of inflammasomes activation and cytokine production within the heart in 
response to IRI.
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kines are involved in the stimulation of the 
adverse inflammatory reactions in response 
to IRI, as well as, in protective feedback sig-
naling against subsequent IRI. Accordingly, 
the above-mentioned scenario should be con-
firmed as a whole by experimental studies to 
identify whether blocking the release of IL1β 
and IL18, with the subsequent lack of IL6 in-
duction, would increase or decrease heart pro-
tection in response to RIPC.

Nevertheless, the augmentation of the above-
presented scenario at different levels (e.g., 
through NO inhalation, NO2

– administration, 
or the use of KATP channel agonists) prior to 
heart transplantation, and or other forms of 
cardiac IRI, was found to provide a significant 
degree of protection, with associated better 
clinical outcomes [24]. 

Further studies should be conducted to con-
firm this mechanism, and whether it could 
also be considered for other organs such as 
lung, kidney and liver. 
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