Investigating Apoptotic Effect through Blocking miR-181b and miR-222 Using LNA-anti-miRNA in HL-60 Cell Line: Strategies to Improve Hematopoietic Stem Cell Transplantation

Mahdiyar Iravani Saadi¹, Fakhroddin Hosseini², Hossain Ali Rostamipour^{2,3}, Zahed Karimi^{2,4}, Iman Jamhiri¹, Nasrin Noshadi¹, Reza Tabrizi⁵, Mani Ramzi^{1,2}*

¹Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

ABSTRACT

Background: Several genes that control the commitment and differentiation of hematopoietic stem cells are regulated by miRNAs. Hematologic cancers like acute myeloid leukemia (AML) have been found to express miRNAs abnormally.

Objective: In this current study, we assessed the apoptotic effect of miR-181b and miR-222 blockage, which can influence the expression of WT1, CEBPA, and C-KIT genes in an HL-60 cell line.

Methods: Relative gene expression was observed by the SYBR Green Real-Time PCR method. By transfecting the HL-60 cell line with locked nucleic acid (LNA)-anti-miRNA, miRNA expression was suppressed. MTT assay was used to determine the viability of transfected cells, and PE Annexin V apoptosis detection kit I was used to evaluate the apoptosis.

Results: After LNA transfection, the results showed a reduction in the expression of miR-181b and miR-222. The flow cytometry data showed the apoptosis reduction by the inhibition of miR-181b and apoptosis increase by the inhibition of miR-222. We also found that miR-222 inhibition dramatically reduced c-KIT level, however, miR-181b blockage was associated with up-regulated of *C-KIT* expression. Moreover, the LNA-modified miR-222 could up-regulate *BAX* and down-regulate *Bcl-2*, whereas, after the transfection of the LNA-anti-miR-181b, *BAX* expression levels were significantly lower on average.

Conclusion: We concluded that the inhibiting of miR-222 and increasing miR-181b could help to control AML disease. MiR-222 could be a possible prognostic biomarker in patients who had hematopoietic stemcell transplantation (HSCT) due to its higher expression in HSCT patients who got a graft-versus-host disease (GVHD).

INTRODUCTION

cute myeloid leukemia (AML) is a type of leukemia that causes bone marrow failure and immature myeloid cell growth [1]. It is one of the most prevalent hematologic cancers in adults [2] and is brought

on by myeloid stem cells that proliferate and differentiate abnormally [3]. It results from two or more genetic changes, and these alterations activate signal transduction pathways, which promote proliferation and act on transcription factors while blocking differentiation [4].

Patients with hematologic malignancies, particularly AML, have been found to have dysregulated expression of miRNAs due to mutations or epigenetic alterations [5].

*Correspondence: Mani Ramzi, MD

Department of Hematology, Medical Oncology, and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran, Postal code: 71348-14336

ORCID: 0000-0003-2878-4559 E-mail: ramzim43@yahoo.com

²Hematology, Oncology, and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Shiraz, Iran

³Department of Internal Medicine, Jahrom University of Medical Sciences, Jahrom, Iran

⁴Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran

⁵Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran

Hematopoietic stem cell transplantation (HSCT) is a prominent curative therapy that enables the replacement of the host's hematopoietic stem cells (HSCs) with those from a healthy donor or genetically modified autologous HSCs. However, graft-versus-host disease (GVHD), which affects recipients of allogeneic HSCT, remains the leading cause of post-transplant morbidity and mortality [6]. Recent studies have highlighted the potential of various microRNAs (miRNAs) as biomarkers for predicting GVHD following allogeneic hematopoietic cell transplantation (HCT). Specifically, a plasma profile comprising four miRNAs-miR-423, miR-199, miR-93*, and miR-377—has been identified as a predictor of acute GVHD (aGVHD). Furthermore, this miRNA signature has been associated with both the severity of aGVHD and patient survival outcomes [7, 8].

Small, non-coding RNA molecules known as microRNAs (miRNAs) are recognized as crucial regulators of practically all physiological signaling pathways [9]. These molecules typically attach to the 3' untranslated regions (3' UTR) of their respective targets to impede translation or cause the instability and destruction of their mRNA targets [10]. MiRNAs have essential roles in every facet of cancer biologies such as proliferation, differentiation, and apoptosis [11]. Abnormal miRNA expression has also been observed in hematologic malignancies [12-14]. They play effective roles in all phases of hematopoiesis, such as the maintaining of stem cells, differentiation, proliferation, and apoptosis [15]. MiRNAs may act as tumor suppressors or oncogenes in leukemia [16, 17]. MiRNAs have been discovered to have a prognostic value for chemotherapy response and prognosis in cancer patients [18].

Previous research revealed that not all AML patients exhibit the same micro-RNA expression. Some of them, like miR-155 [19] and miR-196b, are overexpressed [20, 21]. Others, such as miR-29a, -29b, and -29c, however, are downregulated [22]. In AML patients, several microRNAs can be employed as biomarkers for diagnosis or prognosis. For example, miR-

NA-181a-3p, miR-125a and -125b, miR-93, and miR-98 overexpression are associated with favorable prognoses in AML patients [23-27]. However, the upregulation of some additional genes, such as miR-486 [28], miR-362-5p, and miR-21, can also be associated with a bad prognosis [29, 30]. However, the downregulation of some additional genes, such as miR-133 [31], miR-29a, -29b, and -29c are linked to a bad prognosis [32]. In this study, we focused on miR-181b and miR-222 which are among well-researched miRNAs in AML that are undergoing significant changes [33, 34]. Several studies have demonstrated that AML patients have dysregulated miR-222 and miR-181b expression [35, 36]. There is growing evidence that the miR-181 family regulates the development of hematopoietic cells such as B cells, T cells, natural killer (NK) cells, and megakaryocytes [12, 37]. Previous research suggested that the adaptor miR-181b may be essential in the connection between inflammation and malignant transformation [38]. Additionally, it found that miR-181b might control the proliferation of myeloid cells, which is crucial for the development of the AML condition [39]. Increased levels of miR-181b prevented cancer cells from growing, spreading, migrating, and spreading to other parts of the body. This was observed in a variety of malignancies such as chronic lymphocytic leukemia, cervical cancer, ovarian cancer, and gastric adenocarcinomas [40, 41]. MiR-222, however, has significant roles in tumorigenesis. Studies showed the enhancement of cancer cell biological mechanism, migration, and microtubule formation by miR-222, which can lead to promoting tumor cell proliferation. In the future, miR-222 may be used as a therapeutic target for AML patients [42, 43].

It have shown that microRNAs (miRNAs) target a diverse range of messenger RNAs (mRNAs) and can function as tumor suppressors, oncomiRs, or regulators of apoptosis across various types of tumors. Specifically, certain miRNAs are associated with promoting apoptosis, while oncomiRs facilitate the progression of maliganancies [44]. OncomiRs and apoptosis can be used as tumor biomarkers for diagnosis, prognosis, and choosing the

best treatment plan for cancer patients by better understanding their functions in certain forms of cancer [45]. Based on the evidence, overexpression of miR-181b and miR-222 has been associated with an increase and decrease in apoptosis, respectively [41, 43]. However, more studies need to clear the probable regulatory effect of miR-181b and miR-222 on apoptosis in AML patients.

In this current study, we assessed the apoptotic effect of miR-181b and miR-222 in the HL-60 cell line. We evaluated the apoptotic index changes and cell viability in the HL-60 cell line after miR-181b and miR-222 knockdown by locked nucleic acid (LNA). LNA is a specific type of modified RNA nucleotide with probable therapeutic applications that recently have been employed to suppress miRNAs [46].

Moreover, we will discuss the effect of miR-181b and miR-222 blocking on the regulation of the essential molecules involved in the intrinsic mitochondrial apoptosis pathway such as *BAX*, *BCL-2*, and *MCL-1* genes. The Bcl-2 family includes both pro-apoptotic proteins like Bcl-2 associated X protein (Bax), and antiapoptotic proteins such as Bcl-2, and myeloid cell leukemia 1 (Mcl-1). Together, these are central in regulating the intrinsic apoptotic pathway [47].

There are five classes of genes' mutations associated with myeloid malignancy: Class I; signaling pathways-related genes (FMS-related tyrosine kinase 3 [FLT3], C-KIT, and casitas b-lineage lymphoma [CBL]), class II; transcription factors-related genes (CCAAT/enhancer-binding protein alpha [CEBPA] and nucleophosmin1 [NPMI]), class III; epigenetic modification-related genes (enhancer of zest homolog 2 [EZH2], DNA-methyltransferase 3 alpha [DNMT3A], and isocitrate dehydrogenase 1/2 [IDH1/2]), class IV; tumor suppressor genes (Wilms' tumor 1 [WT1]) [48].

In this study, we investigated the effect of blocking miR-222 and miR-181b on the expression of WT1, CEBPA, and C-KIT in the HL-60 cell line.

We aimed to understand the regulatory effects of miRNAs which may describe a novel signaling pathway of promotion cancer cell apoptosis and quiescence.

MATERIALS AND METHODS

Cell Culture

The National Cell Bank of Iran provided the HL-60 cell line (Human Acute Promyelocytic Leukemia: APL) (Pasteur Institute, Tehran, Iran). The cells were kept in 25 cm² culture flasks (Nunc, Denmark) at 37°C in Roswell Park Memorial Institute (RPMI) 1640 (Gibco, UK) supplemented with 10–20 percent fetal bovine serum (FBS; Gibco), 100 U/mL of penicillin, and 100 g/mL of streptomycin (Sigma-Aldrich, USA). To keep the cells in an exponential growth phase, the cells underwent passage twice a week.

SYBR Green Real-time PCR

Relative expression of the miR-181b and miR-222 mRNAs was assessed by using an iQ5 thermocycler (BioRad Laboratories, USA) and SYBR® Premix Ex Taq TM II (Tli RNaseH Plus) master mix (Takara, Japan), and specific primers for each miRNA. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the internal control gene to standardize the expression of the miR-181b and miR-222 mRNAs. The Real-Time PCR reaction methodology and primer sequences are summarized in Table 1. After the program, a melt curve analysis was done to establish the reaction's specificity. The $[2^{-\Delta\Delta Ct}]$ method, where $Ct = \lceil Ct \text{ (patient)} - Ct \text{ (control)} \rceil$ and $Ct = \lceil Ct \rceil$ (sample) - Ct (housekeeping gene), was used to calculate the changes in the relative expression levels of MiR-181b and MiR-222 mRNAs. At the very least, duplicate wells were used for every real-time polymerase chain reaction.

Cell Transfection

The LNA was used to block the expression of miR-222 and miR-181b since it is precisely complementary to their 5' regions. The miR-NAs' nucleotide sequences, 5'-CUCAGUAGC-CAGUGUAGAUCCU for miR-222 and 5'-AACAUUCAUUGCUGUCGGUGGGU

Table 1: Sequences of primers and thermocycling condition		
Primers	Sequences (5'-3')	Thermocycling condition
miR-222	Forward: 5'-GCATGTCATCACTCAGTAGCCAGTGTA-3' Reverse: 5'- CCAGTGCAGGGTCCGAGGTA-3'	94°C/2 min, 40 cycles of 95°C/30 sec, 57.5°C/ 20 sec and 70°C/30 sec
miR-181b	Forward: 5'- GTTTGAACATTCATTGCTGTCG-3' Reverse: 5'- GTGCAGGGTCCGAGGT-3'	94°C/2 min, 40 cycles of 95°C/30 sec, 58°C/20 sec and 70°C/30 sec
WT-1	Forward: 5'- CCAGGCTTTGCTGCTGAG-3' Reverse: 5'- GTGGCTCCTAAGTTCATCTG-3'	95°C/2 min, 40 cycles of 95°C/30 sec, 57.5°C/ 20 sec and 70°C/30 sec
C-KIT	Forward: 5'- TTCTGCTCCTACTGCTTC-3' Reverse: 5'- CTGGATGGATGGATGGTG-3'	95°C/2 min, 40 cycles of 95°C/30 sec, 59.5°C/ 20 sec and 70°C/30 sec
CEBPA	Forward: 5'- GAAGCACGATCAGTCCAT-3' Reverse: 5'- GCCAGATACAAGTGTTGATAT-3'	95°C/2 min, 40 cycles of 95°C/20 sec, 59.5°C/ 20 sec and 70°C/30 sec
GAPDH	Forward: 5'- GGACTCATGACCACAGTCCA-3' Reverse: 5'- CCAGTAGAGGCAGGGATGAT-3'	95°C/2 min, 40 cycles of 95°C/30 sec, 58.5°C/ 20 sec and 70°C/30 sec
BAX	Forward: 5'- GCCCTTTTGCTTCAGGGTTTCA-3' Reverse: 5'- CAGCTTCTTGGTGGACGCAT-3'	94°C/2 min, 40 cycles of 94°C/30 sec, 60°C/20 sec and 72°C/30 sec
BCL-2	Forward: 5'- ACGAGTGGGATGCGGGAGATGTG-3' Reverse: 5'- GCGGTAGCGGCGGGAGAAGTC-3'	94°C/2 min, 40 cycles of 94°C/30 sec, 60°C/20 sec and 72°C/30 sec
MCL-1	Forward: 5'-CCAGGCAAGTCATAGAAT-3' Reverse: 5'-GAGGCTTACAGTCATAGTT-3'	65°C/2 min, 40 cycles of 94°C/30 sec, 56.5°C/30 sec and 72°C/30 sec

for miR-181b, were downloaded from www. mirbase.org. Life Technologies provided the LNA-miRNA inhibitors for miR-222, miR-181b, and the scrambled negative control oligonucleotides for microRNA inhibitors (Applied Biosystems, UK). For cell transfection, HL-60 cells (2.5×10⁵ cells) were grown in a 6-well plate and attained 80% confluence after 24 hours. Following that, cells were transfected with 50 pmol of LNA-anti-miRNA using Invitrogen's lipofectamine 2000 reagent in serum-free RPMI 1640 medium following the manufacturer's instructions. Following transfection, the medium was changed to fresh complete medium (RPMI with 10% FBS, 100 U/ml streptomycins, and 100 ug/ml penicillin) at 37 °C in a humid environment with 5% CO_o (approximately 7 hours). For real-time quantitative PCR analysis and cell viability measurement, the plates were placed in the refrigerator for up to 48 and 72 hours, respectively

Reverse Transcriptase microRNA Real-time PCR

The total RNA of the HL-60 cell line transfected with LNA-anti-miRs was extracted 48 hours after transfection using TRIZOL reagent and then converted into cDNA using Prime Script RT Reagent Kit to check the blocking level of MiR-181b and MiR-222 by LNA-anti-miRs (Takara, Japan). Then, Real-time PCR was carried out in an iQ5 thermocycler (BioRad Laboratories, USA) with specific miR-222 and miR-181b designed primers using SYBR® Premix Ex Taq TM II (Tli RNaseH Plus) master mix (Takara, Japan).

The results were calculated by using the Ct method as previously described [49].

Measurement of Cell Viability

The vitality of the cells was evaluated using the MTT test after 72 hours of transfection (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (Sigma, Germany). In 96-well plates, a total of 5×10^3 cells were seeded and cultured for 24 hours at 37°C with 5% CO_a. Then MTT was added, and the incubation process was continued for an additional 4 hours at 37°C. Following the formation of formazan crystals, 200 µL of dimethyl sulfoxide (DMSO) was added, and the cells were then incubated for an additional 30 minutes at 37°C with moderate shaking. Finally, a microplate reader (FLUOstar Omega, BMG LABTECH, Germany) was used to assess the absorbance intensity at 570 nm. The absorbance ratio between the test groups and the control group was used to determine cell viability [50].

Expression of the BAX, MCL-1, and BCL-2

Total RNA from a transfected HL-60 cell line with LNA-anti-miRNA and scrambled LNA, as well as non-transfected cells, were extracted and transformed into cDNA using Prime Script RT Reagent Kit following effective miR-181b and miR-222 blocking and confirmation of cell transfection (Takara, Japan). Then, Real-time PCR was carried out in an iO5 thermocycler using SYBR® Premix Ex Taq TM II (Tli RNaseH Plus) master mix (Takara, Japan) and particular BAX, MCL-1, and BCL-2 designed primers (BioRad Laboratories, USA). The internal control was the GAPDH gene. Beacon Designer software and Primer 3 online software were used to create specific primers. The $\lceil 2^{-\Delta\Delta Ct} \rceil$ method was used to calculate the changes in the relative expression levels of BAX, MCL-1, and BCL-2 mRNAs.

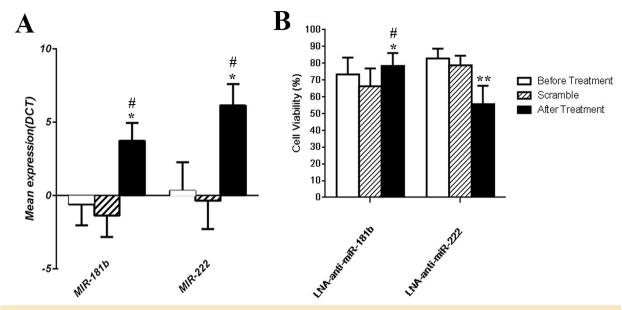
Apoptosis Analysis by Flow Cytometry

In the 6-well plates, 2.5×10^5 HL-60 cells were seeded. After 24 hours, transfection was done. Cells were collected 48 hours later using a dissociation buffer and then subjected to an apoptosis evaluation procedure using PE Annexin V apoptosis detection kit I (BD Inc. USA),

per the manufacturer's instructions. FlowJow analysis software was used for the analysis. The proportion of Annexin V⁺/7-AAD⁻ and Annexin V⁺/7-AAD⁺ stained cells in the population was used to calculate the levels of early and late apoptosis. The percentage of overall apoptosis was calculated as the sum of the early and late apoptosis rates.

Ethical Considerations

All stages were approved by the Ethics Committee of Shiraz University of Medical Sciences (Code: IR.SUMS.REC.1396.S42). In this study, human participation is in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its subsequent amendments or comparable ethical standards.


Statistical Analysis

Version 18 of SPSS software was used to analyze the data. Using a student t-test, the mean expression levels of MiR-181b and MiR-222 were compared between patients and controls. The Pearson correlation test analyzed the correlation between MiR-181b and MiR-222 expression and laboratory data. The expression level of MiR-181b and MiR-222 was compared between patients according to response to chemotherapy treatment, cytogenetic aberration, and FAB subtypes by independent ttest. By using the 2-Related-Samples Test, the expression levels of MiR-181b and MiR-222, BAX, MCL-1, and BCL-2 were compared between two groups (before and after transfection). Statistics were considered significant for P-values under 0.05.

RESULTS

LNA-anti-miR-181b and LNA-anti-miR-222 Effectively Inhibit miR-181b and miR-222 Expression

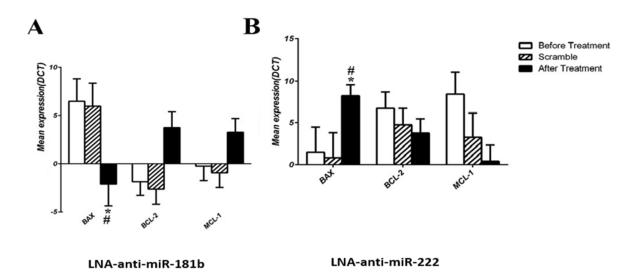
The mean expression levels of miR181b and miR-222 were compared between the LNA-anti-miR transfected, scrambled LNA (as a negative control), and non-transfected groups 48 hours after cell transfection to assess the effectiveness of miRNA blocking by

Figure 1: Changes in miR-181b and miR-222 expression after LNA-anti-miRNA transfection of HL-60 cells (**A**), and the impact of LNA-anti-miR-mediated blockade of miR-181b and miR-222 on cell viability (**B**). *P< 0.05, **P≤ 0.01 vs non-transfected; #P< 0.05, ##P≤ 0.01 vs scrambled LNA.

LNA-anti-miRNA. Both miRNA levels decreased a bit in scrambled LNA-transfected cells compared to untreated cells. When compared to either the scrambled LNA group or the untreated group, the expression of miR-181b significantly decreased (3.71.2 vs. -0.611.4, respectively; P=0.03) (Fig. 1A). MiR-222 levels were statistically significantly lower following LNA transfection compared to the untreated group (6.11.4 vs. 0.311.9, respectively; P=0.02, Fig. 1A).

Viability of HL-60 Cell Line after LNA-antimiR-181b and 222 Transfection

The HL-60 cell line's viability was reduced slightly in the scrambled LNA groups compared to the untreated control groups. However, a remarkable decrease was observed in the LNA-anti-miR-222 transfected group (about 55%) compared to control groups after 72 hours of transfection (P=0.01, Fig. 1B). Conversely, the blockage of the miR-181b significantly increased cell viability (P=0.04, Fig. 1B).


BAX, BCL-2 and MCL-1 Expression after LNA-anti-miR-181b Transfection

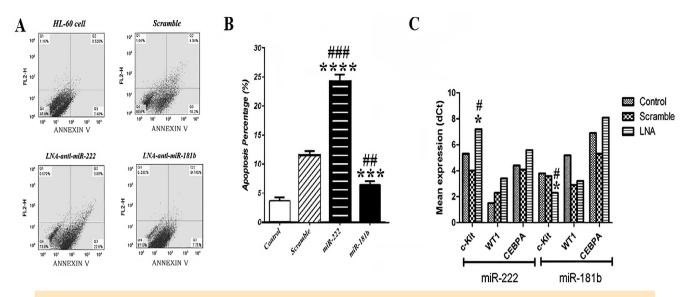
After HL-60 cell lines were successfully transfected with LNA-anti-miRNA to suppress

miR-181b, the expression of the BAX, BCL-2, and MCL-1 genes was assessed. According to the results, BAX means expression levels in transfected HL-60 cell lines were considerably lower than those in untransfected ones (8.21.3 vs. 1.43.01, P=0.01), but MCL-1 and BCL-2 mean expression levels in the transfected group were higher than those in the untransfected group, although these differences were not statistically significant (0.4 \pm 1.8 vs. 8.4 \pm 2.6; P=0.2 for MCL-1 and 3.7 \pm 1.7 vs. 6.7 \pm 1.9; P=0.2 for BCL-2, respectively, Fig. 2A).

BAX, BCL-2 and MCL-1 Expression after LNA-anti-miR-222 Transfection

The data revealed that in the case of cell transfection with LNA-anti-miR-222, the mean expression level of BAX was significantly increased in the transfected group compared to non-transfected one (-2.1 \pm 2.2 vs. 6.4 \pm 2.3, respectively; P=0.01), while, the mean expression of BCL-2 was significantly decreased in the transfected group compared to the non-transfected (3.3 \pm 1.4 vs. -1.8 \pm 1.4; P=0.01). Moreover, no statistically significant decrease was observed for the MCL-1 gene (3.2 \pm 1.4 vs. -0.2 \pm 1.4; P=0.1, Fig. 2B).

Figure 2: Changes in *BAX*, *BCL-2*, and *MCL-1* gene expression following miR-181b blockage with LNA-antimiR (**A**), and following miR-222 blockage with LNA-anti-miR (**B**). *P< 0.05 vs non-transfected; #P< 0.05 vs scrambled LNA.


The LNA-anti-miRs (miR181b and miR-222) could Affect Apoptosis

After transfection with LNA-anti-miRs, the HL-60 cell line's annexin V⁺/7-AAD⁺ was analyzed (Fig. 3A). Following gating, normal cells that are deemed viable are PE Annexin V and 7-AAD negative. Dead cells were scored as necrotic (annexin V-/7-AAD+, upper left quadrants, Q1), late apoptotic (annexin V⁺/7-AAD⁺, upper right quadrants, Q2), or early apoptotic (annexin V+/7-AAD-, lower right quadrants, O (lower left quadrants, O4). Using flow cytometry, the effects of LNA-anti-miRs (miR181b and miR-222) on apoptosis in the HL-60 cell line were investigated (Fig. 3B). The total percentage of overall apoptosis was calculated as the sum of early and late apoptosis percentages. The data come from three separate investigations. In line with these findings, flow cytometry demonstrated that LNA-anti-miRs (miR181b and miR-222) dramatically altered the HL-60 cell line's apoptosis (P<0.05) when compared to the control (HL-60 cell that was transfected by scramble). For LNA-anti-miR-222 and LNA-anti-miR-181b, the transfection demonstrated an apoptosis percentage of 24.29% and 6.41%, respectively. Additionally, a scrambling had an 11.4% apoptotic rate (Fig. 3A and 3B). These findings demonstrated that LNA-anti-miR-222 enhanced HL-60 cell mortality (P<0.0001).

However, LNA-anti-miR-181b caused HL-60 cells to undergo less apoptosis (P=0.001).

WT1, C-KIT, and CEBPA Expression after LNA-anti-miRNA Transfection

The expression of the genes for WT1, C-KIT, and CEBPA was examined to determine whether blocking miR-222 and miR-181b can alter the expression of WT1, C-KIT, and CEBPA after successfully blocking the miR-181b and miR-222a by transfection of HL-60 cell lines with LNA-anti-miRNA. The results demonstrated that mean C-KIT expression in transfected HL-60 cell lines with LNA-anti-miR222 was significantly reduced compared to non-transfected one (5.3.2.2 vs. 7.23.7, respectively; P=0.03),whereas mean WT-1 and CEBPA expression did not change significantly in a transfected group compared to non-transfected one (1.51.3 vs. 3.41.8, respectively; P=0.3 and (Fig. 3C). Contrarily, when cells were transfected with LNA-anti-miR-181b, the mean expression of C-KIT increased significantly in comparison to the non-transfected group (3.82.1 vs. 2.31.6, respectively; P=0.04), but WT-1 and CEBPA did not change significantly in the transfected group compared to the non-transfected group (5.21.6 vs. 3.22.3, respectively; P=0.2 and 6.9 (Fig. 3C).

Figure 3: The flow cytometry results of apoptosis induction following miR181b and miR-222 blockage with LNA-anti-miR (**A**), the proportion of cells that are Annexin V-positive (B), and modification in *C-KIT*, *WT1*, and *CEBPA* gene expression after LNA-anti-miR blocked miR-222 and miR-181b.
*P< 0.05, ***P< 0.001, ****P≤ 0.0001 vs non-transfected; #P< 0.05, ##P≤ 0.01, ###P< 0.001 vs scrambled LNA.

DISCUSSION

Recent research indicates that microRNAs have a significant role in the etiology of human cancers including hematologic malignancies like AML. These compounds can function as tumor suppressors or oncogenes. Investigation of these molecules may provide a promising and novel epigenetic targeting treatment approach in combination with conventional chemotherapy in AML patients. The miR-181b and miR-222 are essential factors in the apoptotic process [41, 43]. They both are considered as apoptosis [51, 52].

In the present work, we sought to identify miR-222 and miR-181b expression as novel molecular biomarkers in AML patients. We also assessed the impact of miR-222 and miR-181b blockade on the expression of the WT1, CEBPA, and C-KIT genes, which are typically dysregulated in AML patients, for the first time based on our understanding.

Several reports indicated the miR-222 tumorigenesis, as it was overexpressed in AML [35]. We found that cell viability was remarkably decreased in the LNA-anti-miR-222 transfected cells as it led to increased apoptosis. We observed a significant increase

of *BAX* expression in LNA-anti-miR-222 cells which is a pro-apoptotic member of the Bcl-2 family and regulates the intrinsic apoptotic pathway [53]. *BCL-2*, however, was significantly decreased which has an anti-apoptotic characteristic in the BCL-2 family. Based on this evidence, silencing miR-222 which has oncogenic characteristics may represent a successful therapeutic strategy for AML patients as it leads to increased cancer cell apoptosis through the intrinsic apoptotic pathway.

In AML patients, miR-181 expression is linked to a better prognosis [14, 54]. The previous study has shown that over-expression of miR181b leads to modulating hematopoietic lineage differentiation and enhances apoptosis significantly [55-59]. We discovered that miR-181b blockade greatly enhanced cell viability, as LNA-anti-miR-181b led to reducing the apoptosis of HL-60 cells. In line with our study, other studies also showed the effective role of miR181b in apoptosis through the employing of certain mediators such as TGF-β and NF-κB signaling pathways [60, 61]. We also observed the significant up-regulation of the anti-apoptotic gene, BCL-2, and downregulation of the pro-apoptotic BAX gene in the transfected HL-60 cell line with LNAanti-miR181b. Up-regulation of BCL-2 which anti-apoptotic characteristics following the inhibition of miR181b, suggests that miR181b induces apoptosis and causes a favorable outcome. In a study by Kronski et al, they also found that over-expression of miR181b in MDA-MB-231 cells could double the apoptosis rate [62]. Consistent with our study, other studies have shown that BCL-2 and MCL-1 with anti-apoptotic features are the targets of miR-181a/b, and they lead to apoptosis resistance in leukemia [63]. It was recently found that up-regulation of MiR-181a and miR-181b, in lymphoma have along with better prognosis [64], as miR-181b enhances differentiation, maturation, and immunosuppression. By increasing IL-10 and TGF-β, for instance, and decreasing circulating TNF-α and IL-6, it improves the activities of many innate and adaptive immune cells, creating an autocrine loop that intensifies immunosuppression [65].

60-80% of AML patients have high levels of C-KIT expression [66]. The C-KIT oncogene encodes the class III transmembrane receptor tyrosine kinase, often known as CD117 [67]. In less than 5% of marrow myeloid progenitor cells is it expressed [68]. 70% of AML patients' blasts display C-KIT expression [69]. Overexpression of both wild and mutant forms of C-KIT has been shown to encourage leukemogenesis [67]. While its down-regulation can stop hematological malignant cells from growing or spreading [70]. In our study, we showed that the expression level of C-KIT in transfected LNA-anti-miR222 cells was significantly decreased, which is along with a better prognosis. However, an increase in the C-KIT expression level in LNA-anti-miR-181b transfected cells was observed, and based on the previous studies its overexpression can lead to abnormal cell proliferation and poor outcomes [54, 71]. So based on the critical role of c-KIT signaling, targeting this molecule could be a novel therapeutic approach for the treatment of cancer, especially hematologic malignancies [72].

In conclusion, we show that miR-181b and miR-222 have potential therapeutic effects on AML cells. This article identifies a crucial area of research for examining whether miRNAs can increase the effectiveness of con-

ventional therapy strategies. By influencing BCL-2 and BAX, we discovered that downregulating miR-222 in HL-60 cells increased the rate of apoptosis; however, inhibiting miR-181b had the reverse effect. We also demonstrated that the expression of the C-KIT oncogene can be influenced by miR-181b and miR-222. Inhibiting miR-222 and increasing miR-181b could be a novel therapeutic approach for treating AML that could be used alone or in combination with current therapies to overcome the current limitations in treating this malignancy. These two miRNAs can be used as biomarkers to monitor the response to the treatment of AML patients. In later trials, biological therapy can also be accomplished by focusing on the two miRNAs. The relevance of these microRNAs in AML has to be studied further by developing a transgenic mouse model. As a result, this study offers AML patients a tempting therapy strategy.

In conclusion, combining standard chemotherapy with regulating miR-222 and miR-181b expression may be a helpful strategy to reduce blast cell survival and leukemic cell proliferation in AML patients. Additionally, we demonstrated for the first time that the *C-KIT* gene may be a new target for miR-222 and miR-181b.

ACKNOWLEDGMENTS

The author would like to thank all of the patients who took part in the study the best.

CONFLICTS OF INTEREST: None declared.

FINANCIAL SUPPORT: The author would like to thank the Hematology Research Center and the Shiraz University of Medical Science for financial support.

REFERENCES

 Löwenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med 1999;341:1051-62.

- De Kouchkovsky I, Abdul-Hay M. 'Acute myeloid leukemia: a comprehensive review and 2016 update'. Blood Cancer J 2016;6:e441.
- Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med 2015;373:1136-52.
- Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. *Blood* 2002;**100**:1532-42.
- Wallace JA, O'Connell RM. MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. *Blood* 2017;130:1290-301.
- 6. Copelan E. HSCT: navigating the journey ahead. Lancet Haematol 2015;2:e83-e4.
- Kuba A, Raida LJMoi. Graft versus host disease: from basic pathogenic principles to DNA damage response and cellular senescence. *Mediators Inflamm* 2018;2018:9451950.
- Xiao B, Wang Y, Li W, et al. Plasma microRNA signature as a noninvasive biomarker for acute graft-versus-host disease. Blood 2013;122:3365-75.
- Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. *Cell Signal* 2015;27:1380-91.
- Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.
- 11. Hartmann J-U, Bräuer-Hartmann D, Kardosova M, et al. MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. *Cell Death Dis* 2018;**9**:814.
- Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. *Science* 2004;303:83-6.
- Garzon R, Croce CM. MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 2008;15:352-8.
- 14. Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. *Oncotarget* 2017;**8**:3666-82.
- Guo S, Lu J, Schlanger R, et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA 2010;107:14229-34.
- Katzerke C, Madan V, Gerloff D, et al. Transcription factor C/EBPα-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 2013;122:2433-42.
- Sun LL, Li WD, Lei FR, Li XQ. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018;22:4568-87.
- Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017;16:203-22.
- 19. Salemi D, Cammarata G, Agueli C, et al. miR-155 regulative network in FLT3 mutated acute myeloid leukemia. *Leuk Res* 2015;**39**:883-96.
- 20. Popovic R, Riesbeck LE, Velu CS, et al. Regulation of mir-196b by MLL and its overexpression by

- MLL fusions contributes to immortalization. *Blood* 2009:**113**:3314-22.
- Coskun E, von der Heide EK, Schlee C, et al. The role of microRNA-196a and microRNA-196b as ERG regulators in acute myeloid leukemia and acute Tlymphoblastic leukemia. Leuk Res 2011;35:208-13.
- 22. Gong JN, Yu J, Lin HS, et al. The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. *Cell Death Differ* 2014;**21**:100-12.
- Qiang P, Pan Q, Fang C, et al. MicroRNA-181a-3p as a Diagnostic and Prognostic Biomarker for Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis 2020;12:e2020012.
- 24. Wang Y, Tang P, Chen Y, et al. Overexpression of microRNA-125b inhibits human acute myeloid leukemia cells invasion, proliferation and promotes cells apoptosis by targeting NF-κB signaling pathway. Biochem Biophys Res Commun 2017;488:60-6.
- 25. Shen MY, Wang Y, Cui SY, et al. MicroRNA-125a regulates proliferation and apoptosis of acute myeloid leukemia through targeting NF-κB pathway. Eur Rev Med Pharmacol Sci 2019;23:3594-601.
- Wang J, Wu Y, Uddin MN, et al. Identification of MiR-93-5p Targeted Pathogenic Markers in Acute Myeloid Leukemia through Integrative Bioinformatics Analysis and Clinical Validation. J Oncol 2021;2021:5531736.
- 27. Hu N, Cheng Z, Pang Y, et al. High expression of MiR-98 is a good prognostic factor in acute myeloid leukemia patients treated with chemotherapy alone. *J Cancer* 2019;**10**:178-85.
- Sha C, Jia G, Jingjing Z, et al. miR-486 is involved in the pathogenesis of acute myeloid leukemia by regulating JAK-STAT signaling. Naunyn-Schmiedeberg's Arch Pharmacol 2021;394:177-87.
- 29. Wu F, Yin C, Qi J, et al. miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia. *Human cell* 2020;**33**:405-15.
- Li C, Yan H, Yin J, et al. MicroRNA-21 promotes proliferation in acute myeloid leukemia by targeting Krüppel-like factor 5. Oncol Lett 2019;18:3367-72.
- 31. Zheng Z, Ma Y, Wu R, et al. Serum miR-133 as a novel biomarker for predicting treatment response and survival in acute myeloid leukemia. Eur Rev Med Pharmacol Sci 2020;24:777-83.
- 32. Xiao Y, Su C, Deng T. miR-223 decreases cell proliferation and enhances cell apoptosis in acute myeloid leukemia via targeting FBXW7. *Oncol Lett* 2016;**12**:3531-6.
- 33. Dehkordi KA, Chaleshtori MH, Sharifi M, et al. Inhibition of MicroRNA miR-222 with LNA inhibitor can reduce cell proliferation in B chronic lymphoblastic leukemia. *Indian J Hematol Blood Transfus* 2017;**33**:327-32.
- 34. Baghbani E, Khaze V, Sadreddini S, et al. PTPN22 silencing in human acute T-cell leukemia cell line

- (Jurkat cell) and its effect on the expression of miR-181a and miR-181b. *Adv Pharm Bull* 2018;**8**:277-82.
- Rommer A, Steinleitner K, Hackl H, et al. Overexpression of primary microRNA 221/222 in acute myeloid leukemia. BMC Cancer 2013;13:1-12.
- Brioschi M, Fischer J, Cairoli R, et al. Down-regulation of microRNAs 222/221 in acute myelogenous leukemia with deranged core-binding factor subunits. Neoplasia 2010;12:866-76.
- Li X, Zhang J, Gao L, et al. MiR-181 mediates cell differentiation by interrupting the Lin28 and let-7 feedback circuit. Cell Death Differ 2012;19:378-86.
- Cervigne NK, Reis PP, Machado J, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet 2009;18:4818-29.
- Chen H, Chen Q, Fang M, Mi Y. microRNA-181b targets MLK2 in HL-60 cells. Sci China Life Sci 2010;53:101-6.
- 40. Wang X, Chen X, Meng Q, et al. MiR-181b regulates cisplatin chemosensitivity and metastasis by targeting TGFβR1/Smad signaling pathway in NSCLC. Sci Rep Sci Rep 2022;12:21706.
- Yang L, Wang Y-L, Liu S, et al. miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells. FEBS Lett 2014;588:124-30.
- 42. Wei Y, Yang J, Yi L, et al. MiR-223-3p targeting SEPT6 promotes the biological behavior of prostate cancer. *Sci Rep* 2014;**4**:7546.
- Gong L, Zhang W, Yuan Y, et al. miR-222 promotes invasion and migration of ovarian carcinoma by targeting PTEN. Oncol Lett 2018;16:984-90.
- 44. Visalli M, Bartolotta M, Polito F, et al. miRNA expression profiling regulates necroptotic cell death in hepatocellular carcinoma. *Int J Oncol* 2018;**53**:771-80.
- Shirjang S, Mansoori B, Asghari S, et al. MicroR-NAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019;139:1-15.
- 46. Baumann V, Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. *Future Med Chem* 2014;**6**:1967-84.
- 47. Masjedi F, Keshtgar S, Zal F, et al. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries. J Steroid Biochem Mol Biol 2020;197:105521.
- 48. Conway O'Brien E, Prideaux S, Chevassut T. The epigenetic landscape of acute myeloid leukemia. *Adv Hematol* 2014;**2014**:103175.
- 49. Iravani Saadi M, Arandi N, Yaghobi R, et al. Aberrant expression of the miR-181b/miR-222 after hematopoietic stem cell transplantation in patients with acute myeloid leukemia. *Indian J Hematol Blood Transfus* 2019;**35**:446-50.

- Iravani Saadi M, Arandi N, Yaghobi R, et al. Up-regulation of the miR-92a and miR-181a in patients with acute myeloid leukemia and their inhibition with locked nucleic acid (LNA)-antimiRNA; introducing c-kit as a new target gene. *Int J Hematol Oncol* 2018;31:238-47.
- Zhou Z, Zhou L, Jiang F, et al. Downregulation of miR-222 induces apoptosis and cellular migration in adenoid cystic carcinoma cells. Oncol Res 2017;25:207-14
- 52. Lu F, Zhang J, Ji M, et al. miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1. *Int J Oncol* 2014;**45**:383-92.
- 53. Pommier Y, Sordet O, Antony S, et al. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. *Oncogene* 2004;23:2934-49.
- 54. Gao X-n, Lin J, Gao L, et al. MicroRNA-193b regulates c-Kit proto-oncogene and represses cell proliferation in acute myeloid leukemia. Leuk Res 2011;35:1226-32.
- 55. Li Z, Lu J, Sun M, *et al.* Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. *Proc Natl Acad Sci USA* 2008;**105**:15535-40.
- Daschkey S, Roettgers S, Giri A, et al. MicroRNAs distinguish cytogenetic subgroups in pediatric AML and contribute to complex regulatory networks in AML-relevant pathways. PloS one 2013;8:e56334.
- 57. Wang X, Gocek E, Liu C-G, Studzinski GP. MicroR-NAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1, 25-dihydroxyvitamin D3. *Cell Cycle* 2009;**8**:736-41.
- 58. Su R, Lin H, Zhang X, et al. MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. *Oncogene* 2015;**34**:3226-39.
- 59. Iravani Saadi M, Ramzi M, Hesami Z, et al. MiR-181a and-b expression in acute lymphoblastic leukemia and its correlation with acute graft-versushost disease after hematopoietic stem cell transplantation, COVID-19 and torque teno viruses. VirusDisease 2021;32:727-36.
- Wang B, Hsu SH, Majumder S, et al. TGFβ-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 2010;29:1787-97.
- 61. Li D, Jian W, Wei C, *et al.* Down-regulation of miR-181b promotes apoptosis by targeting CYLD in thyroid papillary cancer. *Int J Clin Exp Pathol* 2014;**7**:7672-80.
- Kronski E, Fiori ME, Barbieri O, et al. miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and-2. Mol Oncol 2014;8:581-95.
- 63. Kohnken R, Kodigepalli KM, Mishra A, et al. MicroRNA-181 contributes to downregulation of

- SAMHD1 expression in CD4+ T-cells derived from Sèzary syndrome patients. *Leuk Res* 2017;**52**:58-66.
- 64. Sandoval J, Díaz-Lagares A, Salgado R, et al. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. *J Invest Dermatol* 2015;135:1128-37.
- 65. McClure C, Brudecki L, Ferguson DA, et al. MicroR-NA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. *Infect Immun* 2014;82:3816-25.
- Arber DA. The 2016 WHO classification of acute myeloid leukemia: What the practicing clinician needs to know. Semin Hematol 2019;56:90-95.
- 67. Szatkowski D, Hellmann A. The overexpression of KIT proto-oncogene in acute leukemic cells is not necessarily caused by the gene mutation. *Acta Haematologica* 2015;**133**:116-23.
- Wells SJ, Bray RA, Stempora LL, Farhi DC. CD117/ CD34 expression in leukemic blasts. Am J Clin Pathol 1996;106:192-5.
- Estey E. Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. *Leukemia* 2013;27:1803-12.
- Larrue C, Saland E, Vergez F, et al. Antileukemic Activity of 2-Deoxy-d-Glucose through Inhibition of N-Linked Glycosylation in Acute Myeloid Leukemia with FLT3-ITD or c-KIT MutationsActivity of 2-DG in AML. Mol Cancer Ther 2015;14:2364-73.
- 71. Malaise M, Steinbach D, Corbacioglu S. Clinical implications of c-Kit mutations in acute myelogenous leukemia. *Curr Hematol Malig Rep* 2009;**4**:77-82.
- Stankov K, Popovic S, Mikov M. C-KIT signaling in cancer treatment. Curr Pharm Des 2014;20:2849-80.